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We extend the complex aesthetic field equations for Aj. k and Bjk so as to have 
symmetry between these fields. We find computer solutions in which the con- 
fluence region takes on a loop shape. We call such a particle a "topological" 
particle. 

1. INTRODUCTION 

In our previous paper (Muraskin 1981) we obtained an extended 
particle system in four dimensions within complex aesthetic field theory. 
Large negative numbers were found in close proximity to large positive 
numbers. The magnitude of the fields grew very large in this "confluence" 
region. These large magnitudes persisted in time. Although we made no 
effort to find what the values of the fields were in this confluence region, we 
can say that the values remained large compared to the surrounding region 
(several orders of magnitude at least, with the possibility of many orders of 
magnitude). This effect we shall term nonattenuation. The particle system 
was bounded by regions in which the fields were small in magnitude. All 
components of the field had large magnitudes in the confluence region. We 
never saw a large magnitude maximum or minimum appearing by itself. The 
regions of large positive numbers and large negative numbers were always 
close by to one another. Such an effect we shall term confinement. A 
limitation with our results was that we observed the confluence region to 
extend in z more and more for high Itl (At-102). On the Other hand, the 
spread in x and y for any particular z was quite small. 

In this paper we extend the equations for A~. k and Bjk. We shall find a 
solution in which the confluence region lies (in a course sense) on a closed 
curve. We shall call such a particle a topological particle. 
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2. NEW EQUATIONS FOR A}k, B~i 

In Muraskin 0980) we introduced complex fields into aesthetic field 

(1) 
theory. We took 

Fjk =A}k + iBj,~ 

with A)k, Bjk real. The field equations, 

ar/k v/k r~, (2) 

then lead to the following equations for Ajk and Big: 

~A}~ _ 
Ox' AimkA~-B~nkBj~ +A~jmArl 

_ i m AjkAm,+BjkB~nt (3) BjmBkl _ m i m i 

aBjk 
Ox' - . % B y  + B~,~A~ + AjmBT, 

+ Bj , ,Ar t -A~Bi t - -  B~A i ,  (4) 

Below we shall discuss an extension of these equations. 
In aesthetic field theory all tensors are treated in a uniform manner so 

far as their change is concerned. That is we have for a vector 

,tA, = r/kAjdx 'k (5) 

A second-rank tensor behaves like the product of two vectors 

dgij= ( Fitkgtj + I'jkgit ) dx 'k (6) 

A third-rank tensor behaves like the product of three vectors 

dr+~ = ( r j y  + r;~r~ - r ~ r  t ,  } dx" (7) 

This aesthetic principle is maintained whether or not the fields are complex. 
Complex fields are a mathematical way to deal with two real fields [in (3) 
and (4) all quantities are real] such that the aesthetic idea of treating all 
tensors uniformly, with respect to their change, is maintained. 
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We can go one step further. All tensors are treated in a uniform way 
even if the dx '~' is complex as well. By choosing 

dx 'k =d x  k - i d x  k (8) 

with dx k real, we obtain 

0 A J  k i m i m i m i m -- +BLkAj[ OX l AmkAj l -BmkBjl +AmkBjl 

and 

+ a'j,.Ar, - BjmB7, + + BjmA5 

--A A2, + B B;, - - B a m, 

- -  i m + B~kA/ AmkAjt + BmkBfi OX l __AmkBj I i m i m i m 

(9) 

+ AjmB~I + B/mA~I --Atjmh~l + BjmB~I 

- A ~ B  i , -- B~Aiml + A~Aimt - B~B il  (10) 

These equations have the property that under the transformation 

A j k  "-'> B ; k  

(11) 

Equation (9) goes into equation (10) and equation (10) goes into equation 
(9). This is desirable, since the initial data for A~k are not to be favored in 
any way over Big. Otherwise it would not be clear which set of data we 
should take for A'jk and which set for Bjk. What we are doing then is treating 
A}k and Bjk in a similar fashion. Note that the right-hand sides of (9) and 
(10) are not equal to one another and are not the negatives of one another. 
Another set of equations we shall consider is 

OA}k 
i m _ _  i m i m i m 

Ox t - A m k A /  B~,~Bjt Am~Bjt B'mkA/ 

"~- a 3 . m A  ~l - -  B ; m B ~ l  - A j m B ~ l  - -  B / m A ~ l  

m i m i m i m i + BjkAmt + AjkB],a -AjkAmI + BjkB~t (12) 
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and 

i m i m 
- -  + A m k A j  t __ i m + B;kAjl Bl.kBjt ~ X  ! A m k B j l  i m 

i m i m +AjraAk! _BjmBkl + AjmBk I + BjmAk t i m i m 

_ _  m i m i _ _  m i m i + Bj,,B I -BjkAml AjkAml AjkB~t (13) 

These equations can be obtained by choosing dx 'k to be 

dx'k=dxk +idx k (14) 

with dx ~ real. Here under the transformation 

Bjk~ --Ajk (15) 

equation (12) goes into equation (13) and equation (13) goes into (12). 
The new sets of equations (9) and (10) and (12) and (13) are integrable 

once the integrability equations for (3) and (4) are satisfied. The integrabil- 
ity equations for (3) and (4) were discussed in Muraskin (1980). As a check 
we observed on the computer that going along different paths gives the 
same answers for fields to high accuracy (12 decimal places in sample runs). 
Integrability is maintained at all points provided it is satisfied at the origin 
point as in our previous work. 

In detail, (16) has the structure, when expanding (7) using (1) and (8) or 
(14), 

d ~ ) .  k �9 i ~ .  +tdBjk {(Re)+i(Im)}dx t (16) 

l 1 l OAj.k/ax is identified with (Re) and ~Bjk/~X is identified with (Im), where 
O/~x I is real. All the terms in (9) and (10) and (12) and (13) are real. 

Thus (8) and (14) can be looked upon as a mathematical device that 
preserves the aesthetic features of the theory and leads to symmetry between 
Ajk a n d  B j k .  

There are now eight coordinates associated with a point since space-time 
is complex. But only four of these coordinates are arbitrary (as we are 
normally accustomed to). The other four are fixed. We have taken them to 
be equal (up to sign) with the usual four coordinates. 
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3. A TOPOLOGICAL PARTICLE 

We use the same origin point data as in Muraskin (1981). These origin 
point data have the group theoretical properties described there. 

For equations (9) and (10) we did not find any confluence structure in 
the work we did. The maps looked pretty much similar to those maps 
described in Muraskin and Ring (1975). We mapped up to z=  10. 

On the other hand (12) and (13) led to a "topological" particle. Our 
ensuing discussion will be restricted to the set (12) and (13). 

In Figure 1 we see a map at t--0, z=0,  with a 0.2 grid for A]~ (a 
representative component). Already we see more structure than we have 
seen previously in aesthetic field theory (provided the integrability equations 
are satisfied). There are eight planar maxima and minima in the region 
around the origin. Long runs down the x, y have not shown evidence for 
more planar maxima and minima (runs were made up to x-----700, y-- 
-+ 700). The fields tend towards zero far away down the axes. We have in 
Figure 1 placed a small box in regions where the magnitudes grow large. 
These regions we call "confluence" regions (Muraskin, 1980a). Here large 
negative numbers and large positive numbers are in close proximity. 

" ~  .10 " 

0 

Off 

0 

g 

Fig. 1. Map for x and y of A I 1 around the origin showing four confluence regions (in boxes). 
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We next investigated maps for various values of z. We found different 
behavior with respect to the number of confluence regions. For example at 
z = - 9  no confluence regions were seen. At z=2.5  there were two con- 
fluence regions. At z = 0  there were four (Figure 1). At z=9.5  there were 
none. Thus, confluence regions were bounded from above and below in z. 
We followed the location of the confluence region for different values of z. 
We found that the confluence regions lie (in a course sense) on a closed 
curve (there was not much thickness to the confluence regions), A sketch of 
the confluence curve is given in Figure 2 for A~I. What we have is a loop. 
The bending of the loop allows for four confluence regions at above z = 0.5. 

We note that in Muraskin (1980a), in null theory, we saw the possibility 
for two confluence regions for each x, y map. The confluence region as a 
function of z was thought to give two lines (presuming that the second 
region can indeed be verified rather than just suggested). If the lines close 
into one another we would have a "topological" particle there as well. 
However, no evidence has been presented for such an effect. 

PICTORIAL SKETCH 

�9 ,1 .  ~ 

j ' l , "  

. . . .  , /  . _ 1 .  ~ 

Fig. 2. Sketch of confluence region in three-dimensional space for All. 
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In this paper we have found that such a "topological" particle does 
exist after all in aesthetic field theory. 

We next investigated the effect of the passage of time. We looked at 
maps at various instants in time. We found confluence regions for all 
instants that we studied. Confluence regions were found in the neighbor- 
hood of 

t = - 1 9 . 5  t - - -13 .5  t = - 6  t=6  

z=10 z=5 z : 0  z = - 7  

x =  15.8 x =  12.2 x=7.2 x=5.4 

y =  --3.8 y=  --2.2 y =  -4.8 y =  -6 .6  

The large magnitudes persisted as the time interval was varied. 
We studied the particle in detail at t = - 6 .  We again found the 

topological-particle, although now the number of confluence regions for a 
particular z was seen at most to be 2. Spreading was not significant at 
t - - 6 .  However, at t = -  19.5 we found that the confluence region had a 
spread Az>22 as contrasted with Az<8.5 at t----0. It is not clear if the 
extension A z will continue to increase as time goes on. We had a problem of 
greater extension also in Muraskin (1981). We did not attempt detailed 
pictures at higher times because of computer time limitations. 

We still found for the different times the same effect that large 
magnitudes were tied to regions where negative numbers were in close 
proximity to positive numbers. Thus again we have the effect of confine- 
ment. 

All field components have large magnitudes in the confluence region. 

4. SUMMARY 

A "topological" particle has been found within aesthetic field theory. It 
is not clear whether many such structures exist. Large negative and large 
positive numbers appear within the particle structure. It may be that large 
distances are a significant feature of the solutions as well. This would make 
the finding of many such "topological" particles difficult. 

A P P E N D I X  

To make the paper self contained we give a description of the origin 
point data used in this paper but introduced in Muraskin (1981). The set 
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below of nonzero gammas is invariant under three dimensional rotations: 

r io  = r~o = r ~ o :  r ~  = r~,  = rg~ = ro~ : A  

r o l -  o -  o -  - r h  - r 5  - - B  

r?3 = r3,  = r~': = - r~3 = - rl~2 = - rr = + c  (17)  

Performing an inversion on the set (17) gives 

r~o = r~o = r330 = r o  = ro*l = r022 = r033 = A  

ro ,  = r o :  = r o 3  = - B  

F2 - y ' 3  -I- '1  - 13 ---21 ---32 -- -- Yl3 = -Y~2 = -r21 = - c (18) 

Both sets of data can be incorporated into the theory by taking (17) to be 
ReFer and (18) to be Im F~"v. We work here with the case A = B = C = O . 1 .  
We use a complex e"i  as follows: 

eai = f'*i + ih"i 

with 

(19) 

Use was made of 

rj~ =e.~e~e~r% (21) 

f l  I =0.88 f l  2 = --0.42 f l  3 = -0 .32  f l  o =0.2 

f21 =0.5 f22 =0.7 f23 = --0.425 f2  o =0.3 

f31 = 0 . 2  f32 = - 0 . 5 5  f33 =0.89 f30 =0 .6  

f ~  1 =0.44 f ~  2 = -0 .16 f ~  3 =0.39 f ~  o = 1.01 (20) 

hll =0.3 hi2 = - 0 . 2  h~3=O.11 hlo =0.15 

h21 = -0 .24  h22 = --0.16 h23 =0.09 h2o =0.07 

h31 =0.13 h32 = -0 .26  h33 =0.31 h3o = -0.086 

h~ =0.05 h~ =0.1 h~ = -0 .26  h~ = -0.31 
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This set of origin point data leads to a "topological" particle. It is not clear 
that this is the only set of data which leads to this type of result. 
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